Is Joint Training Better for Deep Auto-Encoders?
نویسندگان
چکیده
Traditionally, when generative models of data are developed via deep architectures, greedy layer-wise pre-training is employed. In a well-trained model, the lower layer of the architecture models the data distribution conditional upon the hidden variables, while the higher layers model the hidden distribution prior. But due to the greedy scheme of the layerwise training technique, the parameters of lower layers are fixed when training higher layers. This makes it extremely challenging for the model to learn the hidden distribution prior, which in turn leads to a suboptimal model for the data distribution. We therefore investigate joint training of deep autoencoders, where the architecture is viewed as one stack of two or more single-layer autoencoders. A single global reconstruction objective is jointly optimized, such that the objective for the single autoencoders at each layer acts as a local, layer-level regularizer. We empirically evaluate the performance of this joint training scheme and observe that it not only learns a better data model, but also learns better higher layer representations, which highlights its potential for unsupervised feature learning. In addition, we find that the usage of regularizations in the joint training scheme is crucial in achieving good performance. In the supervised setting, joint training also shows superior performance when training deeper models. The joint training framework can thus provide a platform for investigating more efficient usage of different types of regularizers, especially in light of the growing volumes of available unlabeled data.
منابع مشابه
Deep Health Indicator Extraction: A Method based on Auto- encoders and Extreme Learning Machines
In this paper, we propose a novel deep learning method for feature extraction in prognostics and health management applications. The proposed method is based on Extreme Learning Machines (ELM) and Auto-Encoders (AE), which have demonstrated very good performance and very short training time compared to other deep learning methods on several applications, including image recognition problems. Th...
متن کاملGradual training of deep denoising auto encoders
Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are added. We show that in the regime of mid-sized datasets, this gradual training provides a small ...
متن کاملTraining Auto-encoders Effectively via Eliminating Task-irrelevant Input Variables
Auto-encoders are often used as building blocks of deep network classifier to learn feature extractors, but task-irrelevant information in the input data may lead to bad extractors and result in poor generalization performance of the network. In this paper,via dropping the task-irrelevant input variables the performance of auto-encoders can be obviously improved .Specifically, an importance-bas...
متن کاملUnsupervised Feature Learning With Symmetrically Connected Convolutional Denoising Auto-encoders
Unsupervised pre-training was a critical technique for training deep neural networks years ago. With sufficient labeled data and modern training techniques, it is possible to train very deep neural networks from scratch in a purely supervised manner nowadays. However, unlabeled data is easier to obtain and usually of very large scale. How to make use of them better to help supervised learning i...
متن کاملA Pitfall of Unsupervised Pre-Training
In this paper we thoroughly investigate the quality of features produced by deep neural network architectures obtained by stacking and convolving Auto-Encoders. In particular, we are interested into the relation of their reconstruction score with their performance on document layout analysis. When using Auto-Encoders, intuitively one could assume that features which are good for reconstruction ...
متن کامل